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Fast Fourier and Wavelet Transforms for Wavefront  Reconstruction in 
Adaptive Optics 

Farid U. Dowla, Jim M. Brase, and Scot S. Olivier 

Lawrence  Livermore National Laboratory 
Livermore,  California 9455 1 

ABSTRACT 

Wavefront reconstruction techniques  using the least-squares estimators are computationally quite 
expensive. We compare wavelet  and  Fourier  transforms  techniques  in  addressing the computation 
issues of wavefront reconstruction in adaptive  optics. It is shown  that because the  Fourier  approach is 
not simply a numerical approximation technique  unlike  the  wavelet method, the Fourier  approach  might 
have  advantages  in  terms of numerical  accuracy.  However,  strictly from a numerical  cornputations 
viewpoint, the wavelet  approximation  method  might  have  advantage in terms of speed. To optimize the 
wavelet method, a statistical study  might be necessary  to use the best basis functions or “approximation 
tree.” 

Key words: Novel algorithms and  architectures,  adaptive optics, wavefront reconstruction, fast 
algorithms, real-time  imaging,  wavefront control, phase reconstruction, FFT methods, wavelets, MEMS. 

1. INTRODUCTION 

Wavefront  reconstruction  techniques for real-time imaging applications using adaptive optics are 
computationally intensive. As we approach  implementation of adaptive optics systems  with  thousands 
of actuators  employing  micro-electromechanical  systems (MEMS), the use of efficient high- 
performance  algorithms for wavefront  reconstruction  will be of significant importance. In this study  we 
have  evaluated  various  fast  wavelet  and  Fourier  methods  in  order  to determine both the speed  and 
robustness of wavefront  reconstruction  algorithms for real-time imaging in large scale adaptive optics 
systems. 

We developed fast signal processing  algorithms for wavefront reconstruction. In particular, we 
have  studied  both  fast discrete wavelet (DWT) and fast Fourier  methods (FFT) to determine the 
performance of these algorithms in  wavefront  phase reconstruction. The wavelet method is of particular 
interest  because the order of the  computation for the  1-D DWT i.s  only O(N) as opposed to O(N Log N) 
for the I-I> FFT. The usefulness of the  wavelets  in  terms  of  reduced number of computations is 
enhanced  by  the  fact  that  the  transform  coefficients  can be truncated significantly; i.e.  transformed into 
sparse expansions. This energy  compaction  property of the 2-D wavelet transforms can be exploited 
fully  in the wavefront reconstruction algorithm in  adaptive  optics. Since there are many “good 
wavelets” or basis functions, in this study we compare the performance for wavelets for fast  and  robust 
wavefront  reconstruction. 

In section 2 we  first derive the Fourier approach  and show that this approach is really an  analytical 
alternative  to  the  true solution. On the other hand, in  section 3 we show that the wavelet  method  is 



strictly a numerical approximation to the  least  square  technique. We illustrate our results with the 
wavelet  scheme,  and summarize our  conclusions in section 4. 

2. WAVEFRONT RECONSTRUCTION USING THE F’FT 

If we sample a wavefront on a regular 2D grid  we  have  an  array of phase  values qPmn where 
0 I m 5 M - 1 and 0 I n 5 N - 1. The  phase  differences A:,, and A:,, are then  given by 

We can  write the phase differences as a matrix  equation 

i = A @  

where is a column  vector containing the x and y phase differences, is a column vector containing 
the phase  values,  and A is a finite difference  matrix.  The least-squares solution for 3, given a slope 
measurement  vector A ,  is  given by solving  the  normal equations 

-+ 

A ~ A @  = ~~i 
In most  adaptive optics systems  the  normal  equations are solved directly using singular-value 
decomposition to give the phase estimate 

@ = ( A ~ A ) ” A ~ A  

This  solution  requires (MN>’ operations to implement the real-time phase reconstructor, assuming that 

the matrix (ATA)-’A’ is pre-computed. 

For large-scale  systems  with  thousands of phase sample points we need a more computationally efficient 
approach, The normal equations can be written in the form [3]: 

represented by its discrete Fourier  coefficients as 



Now we  can write the normal  equations  in terms of the Fourier coefficients as 

where ij,,, are the Fourier coefficients of p,,, . For spatial frequency p,q we can solve directly for qp,q 
as 

Now we need  to write ij,,, in terms of the  measurements Am,n.  

where 3 { f }  is the 
-i2np - 

Fourier transform of f . Since 3{AZ+l,n} = e A>.4 we have 

Then we can write the Fourier coefficients of the phase estimate-as the sum of two spatial filter 
operations 

@P,P  = H ; , $ p ,  + H ; , , ~ ; , ,  

where the filters are given  by 



The algorithm for the Fourier wavefront reconstructor is given by 

1. Compute the Fourier transforms of the phase  d8erencesfrom the wavefront sensor, pp,q, A:,q, 
2. Apply the spatial  filters Hp”.4 ,Hp’,q tu get @ p , q  

3. Inverse  Fourier transform tu get v,,,,~ 

If N is a power of two the spatial filter operations can be  implemented  with FFT’s. The computational 
requirements then scale as O ( N  log, N )  rather  than  as O(N4)  in the direct  vector-matrix multiplication 
approach. 

3, WAVEFRONT RECONSTRUCTION USING WAVELETS 

Although  wavelets are well known  for their signal and image compression properties [2,5,6], a less well- 
known use of the  wavelet  transform is.in obtaining a fast approximate numerical  solution [3] for a 
system of linear equations. As discussed in the previous section, this  implies  wavelets can be used  in the 
adaptive optics  wavefront  reconstruction  problem. The matrix operator, in solving a system of linear 
equations, can  be  thought of as a two-dimensional image. Taking advantage of the energy compaction 
property of the  two-dimensional  wavelet transform, we can expect a large fraction of the wavelet 
coefficients to be small and  negligible.  Hence, the linear system to be solved, in the transform domain, 
is a sparse system  (mostly zero coefficients). To be more specific, consider solving a set of linear 
equations of the forrn: 

A x = b  
The two-dimensional  wavelet  transform of the system matrix, A, and the vector b are denoted by: 

A = W A W T  

b=Wb 

where W represents the kernel of the  wavelet transform operator. Now we can solve for 



where 2 represents the wavelet  transform of the solution  vector. To obtain the solution x, we  take a 
final inverse of the orthogonal wavelet  transform: 

x=WT x 
The efficiency of the wavelet  transform in solving a set of linear equations will  ultimately  depend  both 
on the sparseness  of the matrix  and  on the particular  wavelet  transform approximation algorithm. For 
example, consider the 2-D wavelet transform depicted in Figure 1. 
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Figure 1 : A block diagram of the forward wavelet transform for two-dimensional waveforms or images. Note that for the 
inverse transform, simply replace downsampling (down-arrows) by upsampling (up-arrows) and right-arrows by left arrows. 

The accuracy of the  numerical approximation and  the  number of computation will  depend on the 
number of decomposition steps and  will  further  depend  on the filterbanks "tree" or  path  employed for 
the transformation [5].  There are also a number of different approximation trees that can be chosen 
from; i.e. the exact path of lowpass and  highpass filters. We studied lowpass, highpass, and both 
lowpass and  highpass  approximations for adaptive optics wavefront reconstruction. In our 
implementation  scheme, we found that the lowpass wavelet coefficients were generally more useful. 
The results in this  paper  are  based  on  the double lowpass  wavelet approximation coefficients. The 
inverse wavelet  transform is very similar to  the forward transform shown  in Figure 1, except that  the 
down-sampling by two (down-arrows) are replaced by up-sampling (placing zeros in between data 
samples) and the  right-arrows are to be replaced by left arrows. Finally, the set of filter coefficients used 
to compute the  wavelet transforms and the inverse wavelet transforms is shown in Figure 2. 
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Figure 2: Plots of the typical  wavelet transform filter  coefficients: lowpass analysis, highpass analysis, lowpass 
reconstruction, and highpass resconstruction filters. 

In summary, the  algorithm can be  described as follows: 

Step 1: Compute the wavelet  matrix  approximation for a single stage wavelet transform. This step is 
precomputed just once, and  depends on the system. 

Step 2: This step is repeated multiple times: 
2.1 Compute the wavelet  transform of the input vector; 
2.2 Compute  multiplication in the wavelet domain; 
2.3 Reconstruct the vector approximation by taking the inverse  wavelet  transform. 

Note  that  because the wavelet  transform  basis  has  only a small number of terms (localized) and because 
of the  downsampling operations, it  can be shown that the computation of the wavelet transform is O(M) 
in 1-D and O( M *) in 2-D, where M is the dimension of the input. The computational requirements for 
the wavelet  wavefront  reconstruction  approach  then scales as 0 ( N 2  ) rather than as O(iV4) in the direct 

vector-matrix  multiply approach, and O( N log, N )  using the FFT method. A note of caution: although 
the wavelet  transform  is  numerically  most attractive, it is important to point out that  this  approach is an 
approximation and its usefulness will  ultimately  depend on how well it does in terms of numerical 
accuracy. In the next section  we  present results from applying the wavelet reconstruction method of real 
wavefront  data. 



4. NUMERICAL EXAMPLES USING WAVELETS 

In section 4.1 we first illustrate the  wavelet  approximation  scheme using a simple tractable  numerical 
example. Performance of the approximation on real  data is illustrated in sections 4.2 and 4.3. Finally, 
comments  on areas of care required for using  this  method are included. 

4.1 A SIMPLE NUMERICAL ILLUSTRATION 

For the sake of clarity we first consider simple numerical example on matrix-vector multiplication using 
the wavelet transfonn scheme. Consider a (8x8) matrix A, and a (8x1) column  vector x shown below: 

A =  

64 2 3 6 1 6 0  6 7 57 

9 55 54 12 13 51 50 16 

17 47 46 20 21 43 42 24 

40 26 27 37 36 30 31 33 

32 34 35 29 28 38 39 25 

4i 23 22 44 45 19 18 48 

49 15 14 52 53 11 10 56 

8 58 59 5 4 62 63 1 

, x =  

” 

1 

2 

3 

4 

5 

6 

7 

8 - .  

The numerical solutions to the direct  matrix-vector multiplication and the wavelet approximation are 
respectively  given  by 

Ax=[1162, 1178, 1178, 1162,1162, 1178,1178, 11621 T 

w”[A x ] = [I 170,1170,1170,I170,1170,I170,1170,1 170IT 

Note that in the  wavelet approximation method, we used the 2nd order Daubechies wavelet coefficients 
with two consecutive lowpass (or  smooth  approximation) filtering and downsampling of the rows and 
the columns. The solution therefore represents a smooth approximation of the exact solution. In 
general,  this is an important point about the wavelet approximation method on real data: the 
approximation  quality depends on the exact  decomposition tree (Le. the path of lowpass and highpass 
approximations)  and on determining how  well a particular tree is able to represent the matrix A and 
therefore also the solution vector A x. 

4.2 EXAMPLES WITH REAL DATA 

An example of the A 0  system matrix is shown as an image in Figure 3. To illustrate the 
approximation  with a discernable plot,  we show part of the reconstruction result in Figure 4, and 



compare this wavelet approximation  solution  with the conventional reconstruction technique. In this 
particular example, we used a linear ramp signal  for x, the slope measurement  vector. 
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Figure 3: The A 0  System Matrix (A} represented as an image 

Although the wavelet transform technique  is computationally highly efficient, through the course of this 
study we discovered  that  the  approximation quality does depend on the form of system matrix, A, and on 
the multiplying  vector, x, Furthermore,  the exact lowpass-highpass combinations used  in the 
approximation  algorithm is also quite important.  Our conclusion is that to use the wavelet transform 
technique successfully,  we would need to first carefully characterize the statistical properties of the 
distorted wavefronts  and  then select the best  “basis” (the lowpasshighpass tree). A significant amount 
of work has been performed in wavelet  packets 161 that could be used for optimal performance. Finally, 
we plan to evaluate the  performance of this  in a full adaptive optics system simulation mode. 
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Figure 4: The matrix-vector  multiplication result y = Ax, where A is shown in Figure I and x is a linear ramp vector [ 1 2 . . . 
3491. Only a section of 112 points of the solution vector and the corresponding wavelet approximate smooth  solution is 
plotted over. The smoother graph represents the wavelet approximation solution. 

5. SUMMARY AND CONCLUSIONS 

In this  paper we discussed how the FFT and the wavelet transform methods could be used  to  speed 
up computation  in  adaptive optics wavefront reconstruction. We were  particularly interested in 
comparing  wavelet  method  with the FFT technique. Although, in terms of the number of operations, the 
wavelet  transform  seems to be  more attractive as discussed in sections 2 and 3, we find  that the wavelet 
approximation  might or might  not  be  accurate enough. Only a full scale simulation study can determine 
the performance  in  terms  numerical  accuracy; we plan to do this in the  near  future. The accuracy of the 
approximation  depends on the particular  vector  and matrix properties, and  on the choice of the wavelet 
tree used to decompose the tree. A statistical study  will be needed to select the optimal wavelet 
decomposition. On the other hand, as discussed in section 2, the Fourier approach is much less of a 
numerical  approximation,  and more of an analytical solution until the application of the FFT. Hence, 
the FFT approach  might be more suitable to minimize loss in the numerical  accuracy. 

We observed that  the type of wavelet basis function used does  not seem to make a significant 
difference in the  numerical  results. A low  order basis function, like the Daubechies 2nd order 
coefficients, seems to  be  adequate  with  real  data. 
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